AN ARCHITECTURE FOR MACHINE LEARNING IN DJANGO

Web Applications that Learn by Example

By Benjamin Bengfort and Rebecca Bilbro

Simple View of Integration

- **Data Exploration & Analysis**
 - Feature Analysis
 - Hyperparameter Tuning
 - Model Selection
 - Evaluation: Visual, Iteration
 - Cross-Validation

Model Storage (Also "Model Management")

- Models are stored in the database as pickles.
- Models can be retrieved and loaded by the web application.

Computational Data Store (Also "Data Management")

Integration happens at the database layer. The web application manages transactions on normalized feature tables, which are joined into an instance table for machine learning.

Machine Learning Pipelines

Supervised Machine Learning - Clustering

Build Phase
- Routinely (nightly/weekly) join feature tables into an instance table to create a static snapshot of the data to learn on.
- Engage the model selection triple to fit one or more models.
- Evaluate models using cross-validation.
- Pickle models and save them back to the database.

Operation Phase
- Initialize API by loading "best" model from the database into memory (time consuming, so must be done before request).
- Pass request to `model.predict()`.
- Store predictions to database and return the predicted response.
- Store feedback and update feature tables on POST/PUT/PATCH.
- Redraw predictions as DOLCE.

Model Selection Triple

- Feature Analysis
- Hyperparameter Tuning
- Model Selection

Evaluation: Visual Evaluation, Cross-Validation

For more on the model selection triple, check out Yellowbrick:
https://github.com/DistrictDataLabs/yellowbrick

A visual diagnostic tool for machine learning.